Plurisubharmonic Functions and the Structure of Complete Kähler Manifolds with Nonnegative Curvature

نویسنده

  • LEI NI
چکیده

In this paper, we study global properties of continuous plurisubharmonic functions on complete noncompact Kähler manifolds with nonnegative bisectional curvature and their applications to the structure of such manifolds. We prove that continuous plurisubharmonic functions with reasonable growth rate on such manifolds can be approximated by smooth plurisubharmonic functions through the heat flow deformation. Optimal Liouville type theorem for the plurisubharmonic functions as well as a splitting theorem in terms of harmonic functions and holomorphic functions are established. The results are then applied to prove several structure theorems on complete noncompact Kähler manifolds with nonnegative bisectional or sectional curvature. 0. Introduction In this paper, we are interested in the class of complete noncompact Kähler manifolds with nonnegative holomorphic bisectional curvature. We shall first give a detailed study on the properties of heat flow with plurisubharmonic functions as initial data. Then we shall use the results to prove a Liouville theorem on plurisubharmonic functions and a splitting theorem related to harmonic and holomorphic functions. All these results will then be applied to obtain structure theorems on Kähler manifolds with nonnegative sectional or holomorphic bisectional curvature. The first author was partially supported by NSF grant DMS-0328624, USA. The second author was partially supported by Earmarked Grant of Hong Kong #CUHK4032/02P. Received 05/08/2003.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poisson Equation, Poincaré-lelong Equation and Curvature Decay on Complete Kähler Manifolds

In the first part of this work, the Poisson equation on complete noncompact manifolds with nonnegative Ricci curvature is studied. Sufficient and necessary conditions for the existence of solutions with certain growth rates are obtained. Sharp estimates on the solutions are also derived. In the second part, these results are applied to the study of curvature decay on complete Kähler manifolds. ...

متن کامل

On the Complex Structure of Kähler Manifolds with Nonnegative Curvature

We study the asymptotic behavior of the Kähler-Ricci flow on Kähler manifolds of nonnegative holomorphic bisectional curvature. Using these results we prove that a complete noncompact Kähler manifold with nonnegative bounded holomorphic bisectional curvature and maximal volume growth is biholomorphic to complex Euclidean space C . We also show that the volume growth condition can be removed if ...

متن کامل

Harmonic Functions of Linear Growth on Kähler Manifolds with Nonnegative Ricci Curvature

The subject began in 1975, when Yau [Y1] proved that there are no nonconstant, positive harmonic functions on a complete manifold with nonnegative Ricci curvature. A few years later, Cheng [C] pointed out that using a local version of Yau’s gradient estimate, developed in his joint work with Yau [CY], one can show that there are no nonconstant harmonic functions of sublinear growth on a manifol...

متن کامل

PLURISUBHARMONIC FUNCTIONS AND THE KÄHLER-RICCI FLOW By LEI NI and LUEN-FAI TAM

In this paper, a sharp linear trace Li-Yau-Hamilton inequality for Kähler-Ricci flow is proved. The new inequality extends the previous trace Harnack inequality obtained by H.-D. Cao. We also establish sharp gradient estimates for the positive solution of the time-dependent heat equation for some cases. Finally, we apply this new linear trace Li-Yau-Hamilton inequality to study the Liouville pr...

متن کامل

A Monotonicity Formula on Complete Kähler Manifolds with Nonnegative Bisectional Curvature

In [Y], Yau proposed to study the uniformization of complete Kähler manifolds with nonnegative curvature. In particular, one wishes to determine whether or not a complete Kähler manifold M with positive bisectional curvature is biholomorphic to C. See also [GW], [Si]. For this sake, it was further asked in [Y] whether or not the ring of the holomorphic functions with polynomial growth, which we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003